LEVEL 1: DEEP FASCIA AND EPIMYSIAL LAYER
LEVEL 2: DEEP FASCIA AND RETINACULA
LEVEL 3: SUPERFICIAL FASCIA INTERNAL DYSFUNCTION

Fascia is a connective tissue. All connective tissue is derived from embryological mesoderm layer.

CATEGORIES OF THE PAIN AND MOVEMENT REASONING MODEL.
KINETIC CHAIN

SUGGEST DYSFUNCTION REMOTE TO THE SITE OF PAIN

- Biomechanically-related tissues such as proprioception, hypermobility, and hypomobility
- Assumption is that when elements of the “chain” are not providing normal support or alternatively, flexibility, then movement along the chain can be adversely affected
- Takes into consideration that muscles, joints, and connective tissues are a continual matrix and their movements are interrelated

"There is evidence of central nervous system sensitization and of hyperalgesia and temporal summation of pain in a specific area. Another hypothesis would suggest a facilitated processing of pain messages in the central nervous system, perhaps manifested by neural reorganization in the brain, brainstem, and spinal cord."

“The peripheral theory suggests, in contrast, that myofascial pain is due to an alteration of innervations or of nerve stimulation of muscles or of fascia. This theory is based on the hypothesis that the fascia could be considered as a proprioceptive organ, and that it could be altered by trauma, overuse and surgery.”

BASIC PRINCIPLES OF FASCIAL MANIPULATION:
FASCIAL ANATOMY
1. Fascial Layers
2. Histology
3. Innervation

SOME QUESTIONS

• Why do muscles insert onto or originate from fascia?

• Fascia has an intricate structure, so why only described as having a role for containment?

• Can muscles perform more than one movement, and is fiber activation task oriented?

• Could fascia play an active role in motor control?

CLASSIFICATIONS

LOOSE CONNECTIVE TISSUE

DENSE CONNECTIVE TISSUE

ELASTIC

IRREGULAR

REGULAR

COLLAGEN FIBERS ALL PARALLEL

MULTILAYERED ORGANIZATION

LIGAMENTS TENDONS APONEUROSES APONEUROTIC FASCIA EPIMYSIAL FASCIA
SUPERFICIAL FASCIA

► The retinacula cutis provide an anchorage of skin to underlying tissues and of the superficial fascia to the deep fascia.
► In this way a flexible and yet resistant mechanism of transmission of the mechanical loads from multi-directional forces could be recognized.
► Regional specializations determine the variations in mobility of the skin with respect to underlying tissues.
DEEP FASCIA

• NAMED FOR THE SEGMENT IT SURROUNDS; i.e brachia fascia, crural fascia

• LOOKS LIKE A SECOND SKIN BENEATH THE SUPERFICIAL FASCIA

DEEP FASCIA

• IT’S CONTINUOUS WITH LIGAMENTS, RETINACULA, TENDONS AND EPIMYSIUM

• IN PART IT IS FREE TO GLIDE OVER MUSCLES, AND IN PART IT IS FIRMLY ANCHORED TO BONE

DEEP FASCIA

• IT’S INNER SURFACE PROVIDES INSERTIONS FOR MUSCLE FIBERS

• pectoralis major fascia in continuity with the brachial fascia
DEEP FASCIA

Histological study of the deep fasciae of the limbs

Carla Stecco, MD*, Andrea Porzionato, MD*, Luca Lancerotto, MD*, Antonio Stecco, MD*, Veronica Macchi, MD*, Julie Ann Day, PT*, Raffaele De Caro, MD.*

*Section of Anatomy, Department of Human Anatomy and Physiology, University of Padova, Via A. Gabelli 65, 35127 Padova, Italy
*Physical Medicine and Rehabilitation, University of Padova, Padova, Italy
*Centro Sociale Sanitario del Colli, Physiotherapy, Azienda Usl 16, Padova, Italy

Received 31 March 2008; received in revised form 4 April 2008; accepted 30 April 2008

DEEP FASCIA

- UNDULATED PARALLEL COLLAGEN FIBERS, FEW ELASTIC FIBERS ARRANGED IN LAYERS WITH DIFFERENT ORIENTATION
- LOOSE CONNECTIVE TISSUE BETWEEN THE LAYERS

DEEP FASCIA

Both the fasciae are formed by two to three layers of collagen fibre bundles separated by a thin layer of loose connective tissue (LCT) that permits the different layers to slide one on the other.

Magnified view
Both the fasciae are formed by two to three layers of collagen fibre bundles separated by a thin layer of loose connective tissue (LCT) that permits the different layers to slide one on the other.

Semiaponeurotic Layers

The presence of loose connective tissue interposed between adjacent layers permits local sliding, and so from a mechanical point of view the single layers could be considered independently.

DEEP FASCIA

The presence of loose connective tissue interposed between adjacent layers permits local sliding, and so from a mechanical point of view the single layers could be considered independently.

EXTRACELLULAR MATRIX
FASCIA IS WELL INNERVATED

<table>
<thead>
<tr>
<th>Per cm²</th>
<th>Brachial Fascia</th>
<th>Lacertus Fibrosis</th>
<th>Antebrachial Fascia</th>
<th>Flexor Retinaculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free nerve endings</td>
<td>48.57</td>
<td>27.36</td>
<td>44.37</td>
<td>53.55</td>
</tr>
<tr>
<td>Pacini Corpuscles</td>
<td>0.43</td>
<td>0.26</td>
<td>0.26</td>
<td>0.66</td>
</tr>
<tr>
<td>Ruffini Corpuscles</td>
<td>0.29</td>
<td>0.1</td>
<td>0.26</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Others agree ...
Tesarz J et al 2011 Neuroscience Sensory innervation of thoracolumbar fascia in rats and humans
Corey, S.M. et al. 2011 Cell Tissue Organs Sensory innervation of the non-specialized connective tissue in low back of the rat

What we find in fascia

- Myelinated Axon
- Nonmyelinated n. axon
- Schwann cells
- MUSCLE SPINDLES
- FREE NERVE ENDINGS
- Myofibroblast
- Elastic fibers
- Collagen and Fibroblasts
- PACINI CORPUSCLES
- RUFFINI CORPUSCLES

THORACOLUMBAR FASCIA

THORACOLUMBAR FASCIA
HYPAXIAL MUSCLE COMPARTMENT
ES 1
ES 2
QL 1
QL 2
L3
P
S
RA
RA

THORACOLUMBAR FASCIA
HYPAXIAL MUSCLE COMPARTMENT
ES 1
ES 2
QL 1
QL 2
L3
P
S
RA
RA
EPIMYSIUM

IN SERIES, AT THE END OF EACH MUSCLE TO FORM THE PARATENON, AND CONTINUES INTO THE PERIOSTEUM

Aponeurotic Fascia Covers the Extremities

- Envelopes muscles and connects them by way of myofascial expansions (insertions) around joints.
- Inserts into the periosteum, paratenon, neurovascular sheath and fibrous capsules of the joints.
- Slides on muscle due to loose connective tissue between the “Aponeurosis” and EPIMYSIUM.
- Transmits forces generated by whole muscle.
- Connects to underlying muscle only at myofascial expansions. These occur generally at joints and can merge with epimysium and paramysium.

HUMAN ANATOMY

The anatomical and functional relation between gluteus maximus and fascia lata

Stecco Antonio, MD*†, Gilliar Wolfgang, DO‡,
Hill Robert, PhD†, Brad Fullerton, MD§, Stecco Carla, MD*
THE ANATOMICAL AND FUNCTIONAL RELATION BETWEEN GLUTEUS MAXIMUS AND FASCIA LATA

- The distal insertions of the gluteal muscles are more fascial than osseous
- Suggest that vastus lateralis and biceps femoris work together to stabilize the limb
- The fascia lata forms the intermuscular septum between hamstrings and vasti
- Septum is not just a separating element
- Assists with movement coordination

Pectoral and femoral fasciae: common aspects and regional specializations

A. Strecu, V. MacAll, S. Masiero, A. Faschiano, C. Timpia, C. Strecu, Y. Delhom, R. De Caro
The Expansions of the Pectoral Groove Muscles onto the Brachial Fascia: Morphological Aspects and Spatial Disposition

Cristina Stano2, Andrea Penrotelli2, Veronica Manetti2, Paola Scoccola2, Enrica Riva2, Anne Brzovic2, Roberto Mariani2, Raffaele De Caro2

Special Section: Series of Fascia Congress Abstracts - Part 3 (pp. 73-92)

Volume 13, Issue 1, January 2009, Pages 53-62

MYOFASCIAL SEQUENCE

Anatomical study of myofascial continuity in the anterior region of the upper limb

Antonio Stecco5, Veronica Manetti2, Cristina Stano2, Andrea Penrotelli2, Julie Ann Day6, Vincent Detone7, Raffaele De Caro2

DUE TO THE INNERVATION (AND STRUCTURE) OBSERVED, LUIGI AND CARLA STECCO, HYPOTHESESIZED... A PROPRIOCEPTIVE ROLE OF THE DEEP FASCIA

"IT'S STRUCTURE IS IDEAL FOR THE PERCEPTION OF DIRECTION TENSION"
MECHANICAL BEHAVIOR

• MUST CONSIDER THE SUPERFICIAL AND DEEP RETINACULA CUTIS
• WITH SKIN MOVEMENT, THE SUPERFICIAL ADIPOSE TISSUE MOVES MORE THAN THE DEEP ADIPOSE LAYER
• IF THE RETINACULA ARE SHORT, STRONG AND VERTICAL ALLOWS FORCE TRANSMITTED TO THE DEEPER PLANES
• IF THE RETINACULA ARE THIN, LONG AND OBLIQUE, THEY HAVE GREATER CAPACITY TO MUTE FORCE TRANSMISSION TO DEEPER PLANES
• IMPORTANT TO PROTECTING VESSELS AND NERVES THAT CROSS THE DEEP FASCIA
• MOST NOTABLY, ASSURES THE RECEPTORS IN THE DEEP FASCIA WILL NOT BE ACTIVATED DURING NORMAL STRETCHING OF THE SKIN

MECHANICAL BEHAVIOR

• IN ADDITION TO MUTING SKIN STRESSES TO SUBQ TISSUES, HELP PREVENT HARMFUL EFFECTS FROM MUSCULAR CONTRACTIONS TO THE SKIN
• NORMALLY WHEN MUSCLE CONTRACT THEY SLIDE EASILY UNDER THE SUBQ TISSUES AND THE SKIN IS NOT INVOLVED
• OCCURS BECAUSE, MUSCLE MOVEMENT ALWAYS STRETCHES SPECIFIC PORTIONS OF THE DEEP FASCIA, AND THEIR ACTION INTO THE SKIN IS MITIGATED BY THE DAT AND THE SUPERFICIAL FASCIA

MECHANICAL BEHAVIOR

- RETINACULA CUTIS MUST BE FUNCTIONING NORMALLY FOR SLIDE GLIDE AND SEPARATION BETWEEN DF AND SF
- ALLOWS FOR SEPARATION OF ROLES
- SUPERFICIAL FASCIA- THERMOREGULATORY, LYMPHATIC FLOW, VENOUS/ARTERIAL PROTECTION, NERVE PATHWAYS TO PERIPHERY
- DEEP FASCIA: PROPRIOCEPTION, PERIPHERAL MOTOR CONTROL
- DEEP ADIPOSE TISSUE FEWER NERVES, SERVES AS A WATERSHED BETWEEN THE EXTEROCEPTIVE AND THE PROPRIOCEPTIVE SYSTEMS
- WHERE THE DAT DISSAPEARS, AND THE DEEP FASCIA AND SUPERFICIAL FASCIA FUSE, THE EXTEROCEPTIVE AND PROPRIOCEPTIVE SYSTEMS UNITE
- REASON FOR HAND AND FOOT DEXTERITY: FACILITATES PERCEPTION OF FORM, VOLUME, AND STRUCTURE GUARANTEING ADEQUATE MOVEMENT
MECHANICAL BEHAVIOR

• WHAT HAPPENS WHEN THERE IS NOT NORMAL SLIDE/GLIDE BETWEEN THESE LAYERS?

• WHAT HAPPENS WHEN A SCAR FORMS AND JOINS THE SUPERFICIAL FASCIA WITH THE DEEP FASCIA?

➢ IN THESE SITUATIONS WHERE DENSE AND/OR FIBROUS TISSUE IS “FUSING” TOGETHER SKIN, SF, AND DF;

➢ STRETCHING THE DEEP FASCIA COULD AFFECT THE SUPERFICIAL FASCIA AND VICE VERSA.

➢ IN THESE CASES, EVEN NORMAL MUSCLE CONTRACTION OR SKIN STRETCHING COULD RESULT IN OVERSTIMULATION OF EXTEROCEPTORS AND/OR PROPRIOCEPTORS

SO.....

❖ Fascia is an intricate structure
❖ Muscles insert onto and originate from fascia
❖ Could play an active role in motor control

PROPRIOCESSION

BUILDING BLOCKS

JOINT REPLACEMENT SURGERY
-CAPSULE REMOVED

JOINT RECEPTORS
• PRIMARILY AT END RANGE, "LIMIT DETECTORS"
• UNABLE TO SIGNAL DIRECTION OF MOVEMENT OR POSITION IN "NORMAL RANGE"
• SLOW RESPONDING

SKIN RECEPTORS
• 4 TYPES OF RECEPTORS
• SKIN STRETCH ALONE COMMONLY PRODUCED ILLUSORY MOVEMENTS
• CNS CONCEIVES MOVEMENTS AS FINALIZED GETSURES OR PATTERNS OF MOVEMENTS, STORED AS MULTIPLE REPRESENTATIONS IN THE CEREBRAL CORTEX, AND NOT IN SINGLE MUSCLE ACTIVITY

• THE NERVOUS SYSTEM INTERPRETS AND PROGRAMS MOVEMENTS IN TERMS OF SPATIAL DIRECTIONS AND ANGLES

FASCIAL MANIPULATION ADOPTING REASONING AND ASSESSMENT BASED ON:

DIRECTION OF MOVEMENT

CLASSICAL ANATOMY HAS SOME CONTRADICTIONS WITH REGARDS TO MOVEMENT DIRECTION AND TERMS

• I.E. HIP FLEXION OCCURS IN THE SAME DIRECTION AS KNEE EXTENSION
• PRONATION/SUPINATION ARE SIMILAR TO INVERSION/EVERSION

Traditionally we think that our motor cortex refers to muscles with origins and insertions that move bones... but we will see how thinking in terms of movement direction serves us better

MOTOR EQUIVALENCE

FINAL GESTURES
THE MYOFASCIAL (MF) UNIT

1. Motor units, innervating fibres in **monoarticular** and **biarticular** muscles, to move a body segment *in a specific direction*
2. the joint that is moved
3. nerve and vascular components
4. the fascia that connects these elements together

Defining new boundaries on the human body

Each segment is controlled by 6 myofascial units (MFU) in 6 directions- 3 spatial planes

MOTOR UNITS INNERVATE MUSCLE FIBRES

A Motor Unit = one alpha-motor neurone and the muscle fibres it innervates.

May innervate 10 to 1000 muscle fibres.

When activated all of its fibres contract.
PARTITIONING HYPOTHESIS

ORIGINATING COMMUNICATION

Neuromuscular Partitioning in the Extensor Carpi Radialis Longus and Brevis Based on Intramuscular Nerve Distribution Patterns: A Three-Dimensional Modeling Study

MAYOORENDRA RAVICHANDRAN,1,2 NESANTHINE RAVICHANDRAN,1 KAZANDRA RAVICHANDRAN,1 NANCY H. MCKEE,1 CYNTHYE RICHARDSON,1 MICHELE OLIVER,2 and ANNE M. AGUR3

1Division of Anatomy, University of Toronto, Toronto, Ontario, Canada
2Division of Plastic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
3Department of Medicine, Division of Rheumatology, University of Toronto, Toronto, Ontario, Canada
4College of Physiotherapy, School of Physiotherapy, University of Ontario, Ontario, Canada

THE MYOFASCIAL (MF) UNIT

Each MFU has a:

- Centre of Coordination (CC)
 - where vectors from muscle fibre contraction converge.

- Centre of Perception (CP)
 - where movement occurring at the joint is perceived

CENTER OF PERCEPTION (CP)

Each MFU has a CENTER OF PERCEPTION (CP), where movement occurring at the joint is perceived.

- A vectoral center
- Resultant traction onto the joint capsule, tendons and ligaments

A CP can become painful if,

- the unidirectional forces of the MFU are not synchronized
- Mechanoreceptors in the capsule, ligaments and tendons are subjected aberrant forces
CENTERS OF COORDINATION
HYPOTHESIS

COULD BE POSSIBLE BECAUSE:

1. Part of the deep fascia is fixed to bone

2. Part of the deep fascia is free to glide

1. The fascia is tensioned by myotendinous insertions onto the fascia, and muscle fibers inserting directly onto fascia

FUNCTION OF THE MYOFASCIAL UNIT

THE CC OF A SEGMENT CORRESPONDS TO THE CENTER OF VECTORS FORMED BY THE CORRECT:

• TRACTIONS FROM MUSCLE FIBERS OF THAT MOTOR UNIT
• TENSION THROUGH THE ENDOMYSIUM AND PERIMYSIUM
• TENSION OF THE LOCAL SEGMENT OF DEEP FASCIA (APONEUROTIC FASCIA OR EPIMYSIAL FASCIA)

“A PHYSIOLOGICAL SLIDING SYSTEM IN THE CC IS NECESSARY TO CREATE A CORRECT FINAL VECTOR”
CENTER OF FUSION (CF)

- CC-REGULATES UNIDIRECTIONAL MOTOR UNITS OF A SINGLE MFU

- CF-COORDINATES INTERMEDIATE MOTOR UNITS, ACTIVATED DURING MOVEMENT BETWEEN MFUs IN DIFFERENT SPATIAL PLANES

- FASCIA ACTS AS A RHEOSTAT/REGULATOR FOR ACTIVATION

DIAGONALS

CFs coordinate decreasing activity of one MFU and increasing activity of another.

DIAGONALS

- A DIAGONAL IS A SERIES OF CENTERS OF FUSION THAT COORDINATE TWO ADJACENT SEQUENCES DURING A MOVEMENT IN AN INTERMEDIATE DIRECTION
CF LOCATIONS

CENTERS OF FUSION ARE LOCATED IN:
• THE RETINACULA NEAR JOINTS,
• THE TENDONS, AND
• THE TRUNK, ALONG LINES OF UNIONS
 OF SOME MUSCLES

DIFFERENCES BETWEEN CCs and CFs

CENTERS OF COORDINATION
• OVER MUSCLE BELLIES
• ALONG LINES OF SPATIAL PLANES
• RECRUITED BY FORCEFUL UNIDIRECTIONAL MOVEMENTS

CENTERS OF FUSION
• OVER RETINACULA AND PERIARTICULAR STRUCTURES
• INTERMEDIATE POSITIONS
• RECRUITED BY GESTURES OR COMPLEX MOVEMENTS

Hyaluronic Acid

• HA is a large simple carbohydrate polymer of the ECM
• differs from other GAG in ECM as has no protein
• HA acts as a hydrating, space filling polymer
• Located within and between the interface of tissues (i.e. deep fascia layers, muscle spindle capsule)
• A LUBRICANT for fascia to glide
• Under conditions of stress, HA becomes depolymerized—
 PROMOTES INFLAMMATION
• (inflammatory phase of wound repair is abundant in HA)
• HA acts as a promoter of early inflammation, which is
 crucial in the whole skin wound-healing process, W. Y. John
 Chen and Giovanni Abatangelo, Wound Repair and
 Regeneration, 1999, 7: 79–89
DIFFERENCES

FIBROSIS

• fibrotic tissue whenever the dense connective tissue component is altered

• correlates with a macroscopic rearrangement of the composition and conformation of the entire fascia tissue.

DENSIFICATION

• alteration of the loose connective tissue (adipose cell, GAG, and HA). Can involve one or all three.

• alteration of the quantity or quality of the component of the loose connective tissue may change the viscosity and therefore the function of the lubricant that the loose connective tissue facilitates

DYSFUNCTION

• VISCOSITY CHANGE

• DECREASED GLIDE

• CHANGE IN VECTOR

• JOINT INCOORDINATION

• COMPENSATION

• SYMPTOMS

SEQUENCES OF MYOFASCIAL UNITS

• “3 dimensional movement and stabilization of each segment is guaranteed by synergy and synchrony between the proximal and the distal, and the agonist and the antagonist MF units”

• “Unidirectional MF units linked by myofascial insertions form the myofascial sequences”
TECHNIQUE

• Elbow, knuckles or fingers adhere to the skin

• Pressure must be sufficient enough to cross loose connective tissue

• DEEP FASCIA AND IT’S DERIVATIVES ARE THE TARGET TISSUE

• Treatment is applied away from the site of pain

• Visualize muscle anatomy and bony landmarks to locate deep fascia to be treated.

TREATMENT TIME

How much time is required to modify a fascial fibrosis?

Borgini Ercole, MD*; Stecco Antonio, MD†; Day Julie Ann, PT†
Carla Stecco, MD* ‡

* Borgini Medical Center, Genazzano, Italy
† Physical Medicine and Rehabilitation Clinic, University of Padova, Italy
‡ Centro Scollo Sant’Antonio di Carli, Physiotherapy, Arzeno Ud, Pads, Italy

Received 9 October 2009; revised in revised form 18 January 2010; accepted 10 April 2010

HYALURONIC ACID

The smallest products of the HA catabolic cascade can turn about and suppress the action of of larger predecessors, and thereby modifying their effects

Stern R 2006

• 0-15min
 Onset of inflammatory reaction

• 15min-12h
 Increase in inflammatory reaction:
 Heat, edema. pain

• 12h-24
 Peak of inflammatory reaction

• 24h
 Resolving of inflammatory reaction
THANK YOU
LARRY.STEINBECK@GMAIL.COM
WWW.FASCIALMANIPULATION.COM